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INTRODUCTION

This paper deals with interpolation spaces, a theory that since its origin
in the early sixties has had a deep interplay with approximation theory as
can be seen in the article by Peetre [15] and in the books by Butzer and
Berens [3], Bergh and LOfstrom [1], Triebel [17], and Brudnyi and
Krugljak [2].
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The classical real interpolation method, mainly in the form of a K-space,
is particularly useful in the context of approximation theory.

We shall work here with interpolation methods similar to the classical
real method, but defined for N-tuples (N;): 3) of Banach spaces intead of
couples and incorporating some geometrical elements which are essential in
developing their theory. These methods were introduced recently by Peetre
and one of the present authors in [7].

Previous investigations on interpolation methods for N-tuples have
appeared all through the development of interpolation theory. We refer, for
example, to the papers written by Foia~ and Lions [12], Yoshikawa [18],
Favini [9], Sparr [16], Fernandez [10, 11], Cwikel and Janson [8],
Cobos and Peetre [6], and the monograph by Brudnyf and Krugljak [2].

Several basic results of classical methods for couples are no longer true
in this multidimensional framework. Perhaps the most notorious one is
that the equivalence between the K- and l-constructions fails. However,
interpolation methods for N-tuples still have important application in
analysis. For instance, multidimensional methods are very useful in
investigating function spaces with dominating mixed derivatives (see
[16,2]). Such function spaces were introduced by S. M. Nikol'skij around
1963. Contributions to their theory are also due to Lizorkin, Dzabrailov,
Grisvard, and Besov among other authors (see [16, 17] for complete
references ).

The interpolation methods we consider here are defined by means of
a convex polygon Il = PI' .. P N' an interior point (iX, [3) of II and two
scalar parameters t, s. The Banach spaces A I' ... , A IV' which compose the
N-tuple to be interpolated, should be thought of as sitting on the vertices
of II.

Although these methods were introduced in [7J, the idea of developing
such investigation was suggested by Peetre at the Conference on Interpola
tion Spaces held at Lund in 1982. The geometrical approach that we follow
closes the gap between the ideas of real and complex interpolation. It also
gives a unified point of view for the multidimensional methods of the type
of the classical real method. In particular, when the polygon II is equal to
the simplex, these methods give back (the first nontrivial case of) spaces
studied by Sparr [16], and if II coincides with the unit square we recover
those considered by Fernandez [10]. The resulting theory for methods
associated to polygons highlights the geometrical aspects of the classical
theory of real interpolation (see, for example, [7, 4] ).

Our target in Section I is to establish estimates for the norms of inter
polated operators. This is achieved by minimizing the function

<p(t,S)= max {('J-"s",-fJMJ,
1 ~./~ /\l
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where (xj ' y)l are the coordinates of the vertex Pj and M j stands for the
norm of the restriction of the operator to A j . The outcome is an estimate
for the norm of the interpolated operator by a maximum of products of
powers of the form M?M?M~\ where (c i , cj ' c k ) are the barycentric coor
dinates of the point (x, p) with respect to the vertices Pi' Pj' Pk . Therefore
the classical convexity inequality M ~ M b-IIM 7 valid for couples, turns
now into something of the kind of Caratheodory's theorem on convex sets.
Our result describes the geometrical base of norm inequalities already
known for Sparr and for Fernandez spaces.

Ideas used to derive the norm estimates are also useful to interpolate
Lp-spaces with weights. This is worked out in Section 2.

The problem is now to compute the K- and the i-functional (associated
to the polygon n) for weighted Lp-tuples. Thus we are dealing with a kind
of minimum and of maximum problem, respectively.

Among other results we show new differences between the theory of
Fernandez spaces and the theory of Sparr spaces. We give a 4-tuple of
scalar valued weighted 'I-spaces where the i- and K-methods do not agree.
It is known that Sparr's i- and K-methods always coincide in such a
situation. We also apply our results on interpolation of weighted Lp-spaces
to discuss the influence of the polygon on the resulting interpolation spaces.

In the final Section 3 we come back to norm inequalities but now we are
interested in operators acting from a i-space into a K-space. We derive an
estimate that involves all norms M i raised to powers 0i' where
fJ=(OI, ... ,ON) is any barycentric coordinates of the point (x,P) with
respect to (all) vertices of n.

To do this we relate our polygonal methods with N - I parameters Sparr
methods. We prove that if the K- and J-method coincide on an N-tuple
then they agree with spaces obtained by using Sparr constructions with
N - I parameters and O. In other words, we show that on these N-tuples
the theory of methods associated to polygons (in particular Fernandez'
theory) is a special case of Sparr's theory. We also give some other applica
tions of this result.

1. NORM ESTIMATES

We begin by recalling definitions of i- and K-spaces associated to
polygons (see [7] ).

Let n = PI'" p.\. be a convex polygon in the plane [R2. The vertices of
n are Pj=(.\>y;l (j= I, ..., N). Let A = {AI' ... , A,v} be a Banach N-tuple,
that is to say, a family of N Banach spaces all of them continuously
embedded in a common linear Hausdorff space. We imagine each space Ai
as sitting on the vertex Pi'
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By means of the polygon IT we define the following family of norms on
.E( A) = A I + ... + AN

Here t and s stand for positive numbers. Similarly in A( A) = A In· .. nAN
we can consider the family of norms

J(t,s;a)= max {t"sY'llaIIA,}.
1 ~J~ N

Let now (oc, fJ) be an interior point of II [(oc, fJ) E Int IT] and let
1 ~ q ~ 00. The K-space AI~. pl. q; K is defined as the collection of all a E .E( A)
for which the norm

is finite.
The J-space AI~./J).q;J is formed by all those elements aE.E(A) for which

there exists a strongly measurable function u = u( t, .1') with values in A( A)
such that

Ix IX dt d\'
a= u(t, .1')--

o () t .I'

and

(J X ·X dt dS)l/q. J (t -~.\.- IiJ(t, .1'; u( t, s)))q - -: <:x.
o () t .\

The norm on A(~. fJ). q; J is

(1)

(2)

where the infimum is taken over all representations u satisfying (1) and (2).
Let us see some examples:

EXAMPLE 1.1. Assume that II is equal to the simplex {(0, 0), (I, 0),
(0, I)} and that x > 0, fJ> °with oc + fJ < 1. In this case the K- and the
J-functional are

K(t, .1'; a) =inf {lIalllAI + t IIa2 11 A, + .I' Ila,IIA1: a = jtl ai' ajEA j }

J(t, .1'; a) = max{ Ilall A" t [Iall A2' .I' llall Al}'
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Spaces defined by means of the simplex and the interior point (iX, 13) coin
cide with those studied by Sparr in [16]. Let us denote them by A;\~. [Ii. q; K

-so
and A (,,-. pi. q; J'

EXAMPLE 1.2. Take Il equal to the unit square {(O, 0), (1,0), (0, 1),
( 1, I)} and 0 < iX, 13 < 1. The functionals are now

K(t, s; a) =inf {llalll Al + t lIa2 11 A~ +s Ila,11 A) + ts IIa4 11 A4 : a =it ai' aiE Ai}

J(t, s; a) =max{ IlallAI' t IlaIIA~' s IlalI A" ts IlaII A4 },

and spaces generated in this way are the same as those considered by
. -F-F

Fernandez In [10,11]. For later use we call them AI"-,fJi.q;K and A 1,,-. !Ji. q;J"

The following result shows a sufficient condition for the coincidence of
interpolation methods associated to different polygons. The proof is just a
change of variables (see [5, Remark 4.1 ]).

LEMMA 1.3. Let Il = PI'" P N be a convex polygon, let (ex, 13) E lnt Il,
I ,;;:; q,;;:; 00 and let R be the mapping defined by

R(u, v) = Q+ U(u, v), (U,V)EIR2

where Q E 1R 2 and U is any linear isomorphism of [R2. Then the K- and the
J-spaces defined by means of Il and (IX, 13) coincide (with equivalent norms)
with those defined by means of R(Il) = RP I ·,· RP,s' and R(IX, 13).

As we shall see in Section 2 (Example 2.4) if the polygons are not related
by any affine isomorphism then the resulting interpolation methods may be
different.

Let 11 = {B I' ... , B N} be another Banach N-tuple which we also think of
as sitting on the vertices of another copy of the polygon I1. By T: A ....... 11
we denote a linear operator from 1:"( A) into 1:"( 11) whose restriction to each
A; defines a bounded operator from Ai into Hj (j = 1, ... , N).

One can easily check that if T: A ....... 11 then the restriction of T to
,11,,-. fJl. q; K gives a bounded linear operator

(3)

For J-spaces, we have that

(3' )

is bounded too,
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Our target is to estimate the norms of (3) and (3'). Write M j for II Til A
J

• B
J

(j = I, ... , N). In the case of the classical real method for Banach couples
(AD, A 1)11. q' where the J- and K-constructions always agree, the well
known estimate

II Til All, q. EO,q ~ M b-IIM~

is obtained by a simple change of variables in the integrals defining the
norm (see [lor 17 J). In our multidimensional case the situation is not so
easy because products of powers of parameters t and s might appear in the
K- and the J-functionals. However, since

K(t,s; Ta)~ max {k"jlYIMj } K(tIA,sljl;a)
I ~j~N

changing variables we get

II Ta II I',/!). g; K ~ max U-', -xjl 1',- fI M j } lIarl (... /3). g; K'
I ~j.:s: ,v

Hence

and the same inequality holds for J-spaces.
Following the notation of [7J we put

DEFINITION 104. Let n = Pl' .. Ply be a convex polygon with Pj =
(xj ' Y), and let (IX, 13) E Int n. Then for any N non-negative real numbers
M" ..., M N we write

Dx.fI(M" ... ,M/Il)= inf [max {t'/-"s'j-flMJ).
I> 0, .\' > 0 1:.:; j ~ N .

If we could calculate Dx./J(M" ..., M N ) then we will have an estimate
for the norms of interpolated operators (3) and (3'). Let us show some
examples:

EXAMPLE 1.5. Let n be the simplex and let IX> 0, fJ> °with IX + fJ < 1.
A direct computation yields that

D,.p(M\, M 2 , M 3 )

= inf [max{t-'s-PM I , t'-'s-flM 2 , t-'s'-fIM:d]
t>O• .1">0

which coincides with Sparr's estimate (see [16]).
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EXAMPLE 1.6. Take now n equal to the unit square and 0 < ex, fJ < 1.
Put

N
J
= M~ -IiM~-~M~+P-I,

N2=M:-fJM~-'M:,

N~ = M:-'M~-fJMff,

N 4 =Ml -~-li M~M~,

and define Cf,* as the set of those Nj having only non-negative exponents.
Then

D,.p(M 1 , M 2 , M~, M 4 )

inf [ max {r's - fJ All , t I - ~s - fJ M 2' t - ~S 1 - fJ M 3' t I - ~s 1 - fJ M 4} ]
r > O. s > 0

This result is due to Cobos and Peetre [7, Thm. 2.2], but the proof given
there is not complete. One should change "sums" into "maximums" in the
definition of the function / in [7, p. 380]. More precisely

D~.liIMl' M 2, M 3 , M 4 )

= inf [inf {max[maxIM), sM3 ) t-', max(M2 , sM4 ) t l
-,]} s-P]

s>O 1>0

= inf [(max(M 1 , sM~))I-' (max(M2 , sM4 ))" s-fJ]
.'1>0

= M; - ,M ~ inf l( s)
- .'1>0

where

lis) = max(x, S)l-oc. max(y, s)" s-P

and

Replacing the function/of [7, p. 380] by ldefined above and repeating the
same arguments as in [7] the result follows.

Next we shall work out Doc.. p( M J' ... , M!,.) in the general case of any
convex polygon. The outcome will show the common geometrical base to
Examples 1.5 and 1.6. We start with an auxiliary result.
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LEMMA 1.7. Let Qi=(x;,y;)for i= 1, 2, 3 be affinely independent in (R2.

For every positive real numbers M I , M 2 , M" there exist (unique) positive
real numbers to, So such that

Moreover, if

(4)

then

(ct, fJ) = I c;Q;
;= I

with L ci=l,
i= I

Proof By the affine independence of Ql' Q2' Q" the system of three
equations in the unknown u, v, w given by

i= 1,2,3

has determinant different from O. Put to = e U and So = e', then to, So satisfy
(4) with the common value e".

Assume now

(rx, fJ) = I c;Q;
i=1

Raising to the power c; we get

where I c; = 1.
i= I

for i = I, 2, 3.

i = 1,2,3,

and multiplying these equalities it follows that

Note that some numbers of C j , C2 , C 3 might be negative. Lemma 1.7 shall
be mainly used in case QI, Q2' Q, are vertices P;, Pk , P r of II and (rx, fJ)
is a convex combination of Pi' P k , Pr. It will be useful to have a notation
for the set of all such triples of vertices.

DEFINITION 1.8. Let II = Pl' .. P N be a convex polygon and let
(rx, fJ) E Int n. By ~. (I we denote all those triples {i, k, r} such that
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FIGURE 1.1

P
I

(x, p) belongs to the triangle with vertices Pi' P b Pr (see Fig. l.l). In
other words, {i,k,r} E~.p means that (rx,P) can be written as a convex
combination of Pi' Pk , Pro

Now we are ready to determine D,.p(M" ... , M/II)'

THEOREM 1.9. Let II = PI' .. P /II be a convex polygon with Pj = (xj ' yJ
for j = 1, ..., N, let (x, P) E Int II and let D,. p and ;Jf!,. fJ be as before. Then for
any N-tuple of non-negative numbers M], ..., M,v, we have

Here (c i, Cb cr) are the barycentric coordinates of (x, Pl with respect to
Pi' Pk , Pro

Proof Write

/I =max{M"M"kM"" {i k r} E ~ }fA" ,k r· " • ::t, fJ

and given any positive numbers t, s put

cp(t,s)= max. {t"-'s"j-fJM
i
}

1 ~J~N

so

D,./J(M1, ... ,MII/)= inf {cp(t,s)}.
I> 0, S > 0

For any c > 0, we can find positive numbers t, s such that
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for )= I, ..., N. (5 )

Take {i, k, r} E~.p and let (c;, Ck , c r ) be the barycentric coordinates of
(0:, P) with respect to P;, Pk , Pr. It follows from (5) that

t(X"'-X)Cj,.IYj-P)('IMC':<[D (M M )+c]'j
~I j -....;::; (x, fJ I' ... , N <... ,

Multiply together these inequalities to get

)=i,k,r.

Since {i, k r} was taken arbitrarily in .~. (i and E: > 0 is also arbitrary, we
conclude that

/l ~ Dx.p(M" ... , M N)'

Next, we prove the converse inequality. If, say, {I, 2, 3} E fJJ',. p and
/l = M;' M? M;\ using Lemma 1.7, we can find positive numbers to, So such
that

We claim that

for )=1,2,3. (6)

(7)

Indeed, if (7) does not hold, there must exist a fourth point, say P4' such
that

(8)

The extension of the segment joining P4 and (0:, P) in the direction of (IX, Pl
must meet the side of the triangle PIP 2 P, at a point Q which (obviously)

\. (a, (3)
\
\
\
\

P, Q

FIGURE 2
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is a convex combination of two of PI' P 2' P J (see Fig. 1.2). Say
QEConv(P I , P 2 )·

Then (oc,{3) belongs to Conv(P 1,P2 ,P4 ); i.e., {l,2,4}E.0J',.fl' Choose
O~dJ,d2,d4~1 with d}+d2+d4=1 and d}PI+d2P2+d4P4=(OC,{3).
Find also numbers VI' V 2 , VJ E IR such that VI + V 2 + V3 = 1 and [I} P j +
V2P2+V3P3=P4' According to (6) and (8) we have that

3

M~' M;1 M~J = TI [/1"t;}l, - X').\·ri 1fl - ")]
j~1

=/1t~ - x4 sg-l"4

On the other hand, it follows from the definition of /1 that

Hence

(9)

But

(oc,{3)=d\P} +d2P2+d4P4

= (dl + d4 [!\) PI + (d2 + d4 v2 ) P2 + d4 L'JPJ.

So, using Lemma 1.7 we get that

which contradicts (9).
This proves (7) and therefore

The proof is complete. I
Remark 1.10. Note that (7) implies that D,,fJ is not only an infimum

but a minimum

D,.p(M}, ...,MN )= min [max.{t'J-'sli-fIMJl
I > 0, .r > 0 J ~} ~ /\'

We can recover Examples 1.5 and 1.6 as direct applications of this
theorem. Moreover [Thm. 2.5 in 7] follows also easily from Theorem 1.8.

For later use, we also define the function

G'.fl(M}, ... , M N ) = sup [min {tx/-'s,j-/I M j }].

1> 0, S > 0 1 ~ j ~ I'll
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Observing that

we get from Theorem 1.9.

THEOREM 1.11. Let fl, ((1.., P), ,1>,./1 and M l' ... , M N as in Theorem 1.9.
Then

where again (c i , Cb cr ) stands for the barycentric coordinates of ((1..,11) with
respect to Pi' P b Pro

2. INTERPOLATION OF WEIGHTED LI'-SPACES

Let (Q, J1.) be a measure space with a-finite positive measure J1., and let
A be a Banach space. If w(x) is a positive J1.-measurable function (weight
function) and 1~q~ cn, we denote by Lq(w; A) the Banach space of all
strongly J1.-measurable A-valued functions f having a finite norm

( )

I/q

Ilfll"4(1I;.4I= Lllw(X)f(X)II~dJ1. .

Next we study interpolation properties of weighted Lq-spaces. We restrict
ourselves to the cases q = 1 and q = cn. We shall derive formulae that
involve the functions D,. Ii and Gx./J of Section I but now acting on the
weights.

DEFINITION 2.1. Let fl = PI' .. p.v be a convex polygon with
Pj=(xj'Yj)' let (rx,p)Elntll and let D x • fJ and Gx • fJ be the functions
associated to them. If w1(x), ... , wN(x) are weight functions on Q we put

"'x.p(X)=D>..fI(H'I(X), ..., w~,(x))= inf [max {t,;--x,\.y,-IJw)x)}]
t > 0, S > 0 1 ~ J ~ N

and

W>.,p(x) = G>.,p(W1(X), ... , WN(.X)) = sup [min {t';->'Sli-fJH'j(X)}].
I > O. s > 0 1~ j :s; N

As a direct consequence of Theorems 1.9 and 1.11 we have the following
characterizations:



INTERPOLAnON METHODS AND POLYGONS 333

LEMMA 2.2. Let ;~. /3 be the set of triples associated to II and (oc, fJ). It
holds

11\. (I(X) = max{w;'(x) W~k (x) w~'(x) ; {i, k, r} E '~.{/}

M·". (1('\') = min {w;' (x) w~' (x) w~'(x) : {i, k, r} E ;~. If}'

where (c i , ck ' cr ) stands for the barycentric coordinates of (oc, fJ) with respect
to Pi' Pk , Pro

We start by describing the space obtained applying the K-method to an
Lx -tuple.

THEOREM 2.3. We have

(Lx (11',; A), ... , L,. (II' N; A) )\". /3). x; K = L.r:(I~'oc. II; A).

Proof Assume that I = Lj"'~ I jj where Ij E L .x( Wj; A). Given any t > 0,
s> 0 and any x E Q one has '

N' ,~.

L «lsYIIII;I\L,I"';o4)~ I ('IS "IM)X) 111;(x)Il o4
j-I j_1

N

~ min {t'fS'';Wj(x)} L 111;(x)llo4
'~j~N j_1

~ min {('fS\/Wj(xl) Ilf(x)11 o4'
1 ~j::E; III

Hence

min {("- ".1'" - PM)x)} UI(x) II A ~ t -".1'-/3K( t, .1'; fl·
I .:'(./ ~ lV'

This shows that (Lx(It',; A), ..., Lx(It',,,'; A))loc.(J).x;K is continuously
embedded in Lx(1~·".II; A).

To check the converse inclusion letfELx(lr'"./3;A) and take any t>O,
s> O. For I ~ k ~ N write

A k = {x E Q : t"s"wk(x) Ilf(x )1\ A = min {t"Slllt'j(X) 11/(x)11 A} }.
1 ~j~ N

Define T, = A I' T k = A k \U I ~i<k Ai for k = 2, ..., N, and set

for j= I, ... , N,

where XT'i stands for the characteristic function of the set rj . Clearly

N

1= I I;
j_ J
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t·j

rxS -/J K(t, S; I) ~ t -x.I' - IJ I t'ls" Ilh Il,. ,(II',' AI

j~1

IV

= L SUp [t\1 -XS1'ifJ\~'j(X) Xlj(X) 11/(x)!1 A]
j= 1 XEa

~Nsup [ min {tl
, Xs''i IIH'}(X) 11/(x)II A}]

XE!2 I ~j~lV

which completes the proof. I

Let us go back for a moment to the question of how the choice of the
polygon influences the resulting interpolation spaces (see Lemma L3). As
an application of Theorem 2.3 we show next two polygons that generate
different interpolation spaces.

EXAMPLE 2.4, Let {Ix., Ix (2 -ml, Ix (2-"1, / x(2 -m-,,)} be the 4-tuple of
scalar weighted /T.-spaces over Z x Z where the weight functions are

Let II be the polygon {(0, 0 I, (1, 0 I, (0, 1I, (1/2, I)} and take the interior
point (1/3, 2/3 I. According to Theorem 2,3 we have

where

~v(m, n) == 2 -2",:"3 - max.·:m,i3, 2m,i3-}.

Take now II equal to the unit square {( 0, 0), (l, 0), (0, I), (l, 1)} and
any interior point (~, fJ) E Int II. Applying again Theorem 2.3 (or [7,
Thm. 3,1]) the resulting interpolation space is

(I.. / (2- m) / (2-") / (2- m-,,))F =1 (2-m~-"fJ)
'1"..'" OC' , x' 'x ' (~. P). x; K ,x .

Hence I.xc (w) cannot be obtained by using the interpolation method
associated to the square for any choice of the interior point (~, fJ).

Yet talking about the influence of the polygon on the resulting inter
polation functors, observe that for the case of the square the definition of
Fernandez spaces implies the following property of symmetry
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But if we interpolate by the methods associated to the polygon n = {(O, 0),
( I, 0), (0, I), (1/2, I )}, this property does not hold in general. Indeed,
consider the 4-tuple

where we are now working over N, the set of positive integers. Using
Theorem 2.3 we get

(
/ A (~), r~ ( ~), ", (~), Ix (~))

n v n n n 11/2. 1/21, .,; K

= 1A ()/H) # I A. (D
=(/, G),/x(DJ, (jJJx (Dti2.IJ21.X;K·

Next we consider the "dual" situation of Theorem 2.3: a I-interpolation
formula for LI-tuples. Then the relevant weight is It'x.li'

First note that given any N-tuple .1= {A I' ... , A N} the I-space Alx. /iI. q; J

can be described in a discrete way, using sums instead of integrals. Namely,
AI x, 111. q; J coincides with the collection of all a eE( A) which can be
represented as

a= I um",

~ m. n) EO 1'.2

where LI",." E J(,4) and

(convergence in I(A))

l ~ (2 - "'x . JJjJ,/1(2'" 2'" II ') )ql'iq < oc
~ , , ·m.'l .

(m, tI) E z2

Moreover, the norm 1\a'jll~.lil.q;J is equivalent to

infHI, (2 -",x-"/ll(2"', 2"; LI"""nqlliq},
1l pn, n)EZ-

where the infimum is extended over all representations (LI",.,,) of a as above.
Subsequently, we also denote the discrete norm by 11111~.!i),q;J' This,
however, will produce no confusion.
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THEOREM 2.5. We have

Proof Take IE(L1(li'I;Al, ... ,L1(wN;A))lot./J),I;J and let [;>0. Using
the discrete representation of J-spaces, we can find a sequence (!I",.,,) C

nr= I L,( Wj; A 1such that

I= L u",."

and

L 2 - m>,"Ji J(2"', 2"; um.,,) ~ (I + E:) IIIII I>.. {II. 1; J'

(l1I,nIEZ;'

Then

~ N L 2 -m> -n/JJ(Z"', 2"; Um. n)

(nl. n}E]'2

~ N(1 + f:) IIIIII>../$). I;J'

Conversely, let I be a simple function. Without loss of generality, we
may assume that the weight functions w) are discrete valued. Then f can be
written as

f= L aYXr"
r=]

where a r E A, the sets F y are disjoint with finite ii-measure and the weights
w) are all constant on each Fr. It follows from Lemma 2.2 that 11' >'. Ii is also
constant on each Fr. Moreover according to Remark 1.10, for each r there
are t n sr> 0 such that

max {r',~>'~""-Pw.(xl} = 11' (xlr • r J:1. fJ
I ~j~N

for all x E Fr.
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Given x E Q, define (t" s,) by
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{
(In S,)

(t" sJ = (0,0)

Next, for (m, n) E 2 2, put

if XE F,

if XEQ\U;:~I F,.

Am." = {X EQ : 2'" :(; t, < 2'" + I and 2" :(; S, < 2/1 + I}

and

In this way we get a representation off as

Therefore

f= I U"'./I
(m, HIE?:!

N

with Um."E n L1(lvr; A).
j='

Ilflll~./I).l:J:(; L: 2-",~-,,{3J(2m, 2"; Um.,,)
(m, nIEZ:!

= c I J li·~.li(X) Ilf(xlll A dp
(m.n)EZ'2 A m. n

Since simple functions are dense in L,(lt'o..P; A), the result follows. I

Let us write down some other concrete cases of these theorems.

COROLLARY 2.6. Let n be the unit square and (X. = f1 = 1/2. Then

while
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/n particular, !f WI = W 4 and W2 = w" then

(Lx(H'l; A), Ly~(W2; A), L~(H'2; A), L,JWI; A))il/2, 1/2i,x;K

= L, (WI; A)+ L, (w 2; A)

and

(Lt(w,; A), L t(w2; A), L I ( W2; A), L 1( WI; A ))il/2, '/2), ';J

= L,(H',; A) n L 1(W2; A),

The following formula refers to K-interpo1ation of L,-tuples,

THEOREM 2,7, We have

where the weight r, is defined by

Proof It is not too difficult to see that

K( t, .1'; f) = f min {t'IS"H)X)} Ilf(x)11 A dp.,
!)l~.J~/V

Whence

=f r,(x) 11/(x)IIA dp.
!}

As an application of Theorems 2.5 and 2.7 we shall show another point
where the theory of Fernandez spaces (Example 1.2) differs from the theory
of Sparr spaces (Example 1,1). A quick look at [10 or II] might suggest
that Fernandez spaces have a theory parallel to Sparr's theory [16].
However, the fact that parameters t and s appear together in the K- and
J-functionals of Fernandez while they do not in Sparr functionals, causes
significant differences between their theories. A first hint in this direction is
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the behaviour of norms of interpolated operators (see Examples 1.5 and
1.6). Next we describe another difference.

Sparr proved in [16, Thms. 8.1 and 8.3] (see also Prop. 8.1 ) tha t for any
3-tuple of weighted L I-spaces it holds

(L,(»',; A), L 1(»'2; A), L,(wJ ; A ))i\~.fJ). I;J

= (LI(W 1 ; A), L I (W 2 ; A), L1(w,; A ))i\~.fJ), I; K'

the resulting space being

However, as the following example shows, K- and J-Fernandez spaces
might not agree on an L ,-tuple.

EXAMPLE 2.8. Let [[ be the unit square {( 0, 0), ( I, 0), (0, I), ( I, I)},
and let ex = f3 = 1/2. For n E~, put

and consider the following 4-tuple of scalar weighted sequence spaces
over ~

According to Corollary 2.6, we have

On the other hand, Theorem 2.7 gives that

where

j.'x fx . {- I '2 _ I .2 1 1.2 1/2 1 _ I '2 I? 1 "2'? 1 } dt dsr,(n) = mm t '05 '-,t's-' -,t 's/--,t's'-- --.
00 .;;z n n ~ts
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Let us work out l]( n). Writing the integral as

. {1/2 I " J/' I '2} 11 dt dsmm t ' .1'- 1-, t- -s! - --
n t .I'

and making the change of variables

l=et/+ t
',

we get

s == e" - I"

l](n) = 2[, [" min {e;l, e~lll} du dv

= 8 fa" rmin f~, e~I'} du dv

=~+410gn.
n n

We see then that l](n) is equivalent to log nln. Consequently

- (lOg n) (I) -XI 1/2. 1/2). I: K= II -n- i= II fl = XI 1/2. 1/2" l; J.

Let us go back to the general situation but assuming this time certain
relationships on the weights.

THEOREM 2.9, Let n = PI' .. P N be a convex po(vgon with P; = (xj ' y;l
and let (ex, fJ) E Int n. If WI' w2 , )1'3 are weight ,fimctions on Q, we define

li)x) = w: -x/-Yl(X) W~l(X) w~J(x),

w(x) = w:- a-fJ(x) w~(.\") w~(x)

j= I, ...,N,

and given any Banach N-tuple A = {A I , ... , AN}' we form the vector valued
weighted spaces L I ( Ii'j; Aj) (I ~ j ~ N). Then

(L I( li'l; A I)' ..., L J( Ii'N; AN»)la,fJ), I; K = LI(w; AIO'.fJ), I; K)'

Proof Denote by K(t, .1'; .) the K-functional with respect to the N-tuple
{L I ( Wi; Aj)}:~ I' while K'(t, .1'; .) refers to {AJ;'V= l'



INTERPOLATION METHODS AND POLYGONS

Arguing as in [16], Lemma 8.4, one can check that
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Whence

r'''' i'-" (tH' 2(X)) ->. (S}~,'~(X)) -Ii , (tw 2(X) SH'~(',\') ,) dt dsXJ ~~ -- K ~-,--;/(x) --elIL
o 0 W1(X) Wt(X) Wdx) wdx) t .I'

= f W( x) II/( x) II (>../n. I; K dfL
fJ

A similar formula holds for the i-method. We write this time i( t, .1'; . )

for the i-functional associated to {L j ( }l>/; A j ) }i: j and J'(t, .1'; .) for the
corresponding one to {A/} j: 1 .

THEOREM 2.10. Under the same assumptions as in Theorem 2.9, we have

Proof Using the discrete characterizations of i-spaces, one can verify
that A(A) is dense in AI>../Ji. 1;]' Then it is not hard to verify that simple
functions lof the form

(finite sum),

where G r E A( A), fL( rr) < CXJ and sup, E r, L::~ I ii'j( x) < (fj are dense in both
spaces appearing in the statement. So in what follows, we assume that Ihas
the form (*).

For each r, find a representation
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with

Setting
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f. x f. x - a ,- [1 I " ,dt ds
. t s J (t, S, ~r(t, .I)) -t -S' ~ (l + e) Ilarllla,PI, l;J'
00,

(
tw,(X) SW1(X))

u(t, s)(x) = '" Vr -----, ~'-- Xi (x)
-; wJlX) W1(X) I

we obtain a representation off,

f
x f x dt ds

f= u(t, s) --,
o 0 t S

Since

we derive

~ (l + e) Nt w(x) Ilf(x)lI l a,{J), 1;1 dfl.
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Passing to the limit as f; -+ 0 we get that

Ilfll(,. 13\. I;J ~ N IIfll Ldw; A(o.PI. I;JI'

To prove the converse inequality, suppose that

Ix IX. dt d.l'
f= u(t,S)--

o 0 t S

with

Then we have

~ f 11': -,-fJ(x) w~c\") w~(x)
Q
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~ (l +e) N 11ft,. /3). l;J'

The proof is complete. I
Remark 2.11. Note that in Theorems 2.9 and 2.10 we have

It' = It· = w.'.13 oc.fJ

In the case of arbitrary weights H'I' ... , w N , similar arguments to those used
before prove

L\(IV,.jJ; Aroc.!li. L K) e.- (L\(W1; AI)' ..., L\(w N ; AN))roc,fJl. 1: K

e.- L I( II',. P; Aloc. Pl. I; K)

with analogous embeddings holding for the J-spaces.



344 COBOS, FERNANDEZ-MARTINEZ, AND SCHONBEK

3. J-K ESTIMATES

As we have seen in Section 1, in general we cannot estimate the norms
of operators interpolated by the J- or K-method in terms of the product of
positive powers of the norms of all restrictions T: A j -'> Bj ( 1~ j ~ N). The
fact that the estimate is by the maximum of products of powers of three
norms causes a number of problems in developing the theory.

Sometimes one can come out of the difficulty by imposing a certain
(geometrical) condition on the polygon (see [7, Sect. 5]). Another
possibility is to consider operators from a J-space into a K-space (see
[5, Sect. 4, or 4, Sect. 3]), then the norm can be estimated by

where )' > 0 and 0 < r < 1 are constants depending only on J] and (oc, Pl.
Inequality (10) was established by Cobos et al. [5, Thm. 4.3], by means

of direct computations. In what follows, we shall develop a completely dif
ferent approach based on the relationship between K- and J-methods and
Sparr spaces defined by using N - 1 parameters. The new approach will
allow a better understanding of estimate (10) and also will give interesting
results referring to the coincidence of K- and J-methods.

We begin by reviewing Sparr constructions. If i = (t l' ... , t,~,) and
of = (SI' ... , SN) are N-tuple of positive numbers, we set

ifi= (t}SI' ... , tNS N ), lil=t}···t N ·

By l' = (VI, ... , V,,," _ I) we mean an (N - 1)-tuple of integer numbers.
Associated to vwe have the N-tuple v= (0, V I' ... , V N ~ 1).

Let A = {A j } j"l~ I be any Banach N-tuple. The relevant K- and
J-functionals are now

{

N N }

K s ( i, a) = inf i~} tj Ilaj II A,: a =j~1 ai' aj E A j

Js(i, a) = max {tj IlaII A }.
1~j~N J

Observe that parameters tj do not appear combined in K s nor Js'
Assume that 1~ q ~ co and that e= (e l' ... , eN) is an N-tuple of positive

numbers with ~~ I OJ = 1. The space A~. q; K is the collection of all those
elements a EI(A) which have a finite norm
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P,= (0,0)

-----....
"- '-

"
'-

P
2
= (1,O)

FIGURE 3.1

while AJ. q; J is formed by all those elements a E E( A) which have a
representation of the form

a = I lI v
v E :z:\' - I

where UiiE J(A) and

(convergence in E(A)), (II)

(12)CE~-l (12 -viii J s (2", Uv))q) I/q < 00.

The norm ',I a Ii ~~ q;J of A~. q; J is the infimum of the values of the sum (12)
over all sequences (llv) satisfying (11) and (12). Sparr spaces admit
equivalent definitions in terms of integrals (i.e., continuous descriptions)
but they will not be needed here.

Let again Jl = PI' ., P iV be a convex polygon with Pj = (xj ' Yj), and let
(0{, /J) E Int Jl. Taking into account Lemma 1.3, we may assume without
loss of generality that P[=(O,O), P 2 =(I,O) and PN=(O, I). In other
words, Jl has the form described in Fig. 3.1.

Fi~d 0 < °1 , ••• , 0iV < I with L/~ l OJ = I and L:r~ [OjPj = (0{, fJ), that is to
say, 0 = (0[, , ON) are barycentric coordinates of (ex, fJ) with respect to the
vertices PI' , P iV ' Observe that if N ~ 4, such coordinates are not unique.

To compare Sparr constructions with K- and J-methods associated
to Jl, we shall need the discrete characterization of A(~,IJ). q; J as given in
Section 2. The discrete representation of the K-space is

= {aEE(A): Ilall(~.II).q;K=( L ,(2- mc<-"PK(2 m
, 2"; a))q)liq <oo}.

. (m,n}EZ-
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Subsequently, we use in our notation the scalar product <".) of [R2

writing

and by [x] we mean the integer part of the real number x, i.e. the largest
integer which is less than or equal to x.

The origin of the next result is [7, Thm. 1.4].

THEOREM 3.1. Let (j = (e l' ... , eIV) be some barycentric coordinates of
((1.., Pl with respect to the vertices PI' ... , P ,v. Then we have Ivith continuous
embeddings

A . ~As ~As ~A . '.ioc,fJ),q.J e.q;J e.q;K (~.fJ).q.K

Proof For aEA~.q;K it holds

+2n IlaIVIIA.,.+~t12[mxj+nrl] lIajIIAj}y)'/q

~ (. L , (2 -(hm-ONn-L.;'~~,1 Ojlmx,+nrjl inf {lIalllAI + 2m II a 211 A2

1m. n)EZ'

=! Iiall (oc. fJl. q; K'

On the other hand, if a E A(o:. fJl. q; J and

a= L um • n
(m.n)EZ2
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is a representation of a such that

then setting for vE Z N - I
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if VI =n1, I'N_I =n,

vj=[mxj+l+nYj+IJ (2~j~N-2)

otherwise

we obtain another representation of a, now in the form

a = I Uv
veZ,"I'--l

and therefore

=( I ,(2-02m-oNn-L;v~-/o![mx}+n.vIJ
(m,n)E2-

x max {llum,,,liA!, 2m Ilum,,,IIA,, 21' Ilum,,,liA\e'
3 ';;j';; N-I

)

l/q

2[mxj+ny;Jllu 11.})q
111.11 A,

~( "(2-L;~10j<p"lm,n»+L;'~-1'0;J(2m2".U))Q)1/Q
-....;;:: '-'. ' , 111,"

Im,fl}eZ2

~ 2(1 + e) Ilalll~.I!),q;J'

The remaining embedding A~, q; J e::...-.. A ~~ q; K was proved by Sparr [ 16],
Prop. 5.1, I

We are in a position to establish the norm estimate.

THEOREM 3.2. Let 0= (81 , ... , 8N ) be some barycentric coordinates of
(ct., fJ) with respect to the vertices PI' ..., P N of n. There exists a constant
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C> 0, depending only on 0, such that j(Jr any Banach N-tuples
A={A" ...,A N }, B={B1, ... ,BN } and any operator T:A->Bwehave

N

II Til - - ~ c n Mil,
A!'l.,p),q;J. B1rx,/iJ,q;K -....:::: J'

j~ I

whereMj=IITIIAj.B,forj=I, ...,N. I
Proof We recall that Sparr methods of parameters rJ, q are interpola

tion functors of exponent 0 (see [16, Sect. 4]); that is, the norm of the
interpolated operator is less than or equal to

il/

TIM?
j=1

Combining this piece of information with Theorem 3.1 and the fact that the
norm of the inclusion A~: q; J e-.. A%. q; K only depends on 1J, the result
follows. I

Observe that inequality (10) follows easily from Theorem 3.2.
Our next result is a direct consequence of Theorem 3.1 and gives a

necessary condition for J- and K-method to coincide.

COROLLARY 3.3. Let n = PI'" PI\! be a convex polygon, (oc, fJ) E lnt n,
I ~q~ oc and let A = {AI' ..., AN} be a Banach N-tuple. If

then for any barycentric coordinates {} = (0, ' ... , (J N) (!{ (oc, fJ) with re~pe('t to
the vertices PI' ... , P N, we have

;P =As =A . =A ..II. q; J iI. q; KIa:. /11. q. J (a:. /11. q. K

As a first application of Corollary 3.3 we show a simple N-tuple on
which the J- and K-spaces do not coincide.

EXAMPLE 3.4. Let n = P, ... P N be a convex polygon with at least 4
vertices (N ~ 4), let (oc, {J) dnt n and I ~ q ~x. Assume that (Bo, B,) is a
Banach couple such that Bo n B I is not closed in Bo+ B,. Set

if j = l, ... , N - I,

if j= N.

Then the Banach N-tuple A = {AI' ... , AN} satisfies

(13)
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Indeed. one can choose barycentric coordinates {j = (° 1 , •••• ON).
i[=('lI' ...• 'lN) of (oc.fJ) with respect to P1"",PN in such a way that
o'V#'lN' By Corollary 3.3, in order to prove inequality (13), it suffices to
show that

(14 )

Since Bo n B I is not closed in Bo + B I. the classical real method on
(Bo, B 1) depends effectively on its parameters (see [13, Thm. 3.1]), hence

because O,'l 1'- '1 !Ii' .

Taking into account that the first N - I spaces of the N-tuple A are all the
same, it is not hard to check that

(see [16, Prop. 6.3]). Similarly

This gives (14) and consequently (13).
Examples of Banach N-tuples where K- and I-methods coincide can be

found in [7, Sect. 3]. Theorems 2.9 and 2.10 can also be used to construct
Banach N-tuples having the coincidence property.

Note that Corollary 3.3 says, roughly speaking, that on N-tuples where
K- and I-spaces coincide, the theory of methods associated to polygons is
a special case of Sparr's theory. We close the paper with an illustration of
this "principle." It refers to Fernandez' spaces, so n is equal to the unit
square.

EXAMPLE 3.5. One of the original motivations for Fernandez' work was
to calculate the interpolation spaces generated by the 4-tuple of vector
valued Lebesgue spaces

He stated [lOJ that if 0 < oc, fJ < I, lip = 1 - ex and Ilq = I - p, then the
resulting space is

but his proof has some inaccuracies (see [8, II, 14]). More recently, he
proved in [II, Thm.4.9], that K- and I-spaces coincide on X without
identifying the interpolation spaces.
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Next, we give an alternative proof of the fonnula stated by Fernandez in
[ 10].

Since X~. fJ). q; K = X;~. fJl, q; J and

(oc, p) = (1- oc)( 1- P)(O, O)+oc(l- P)( 1,0) + p(l- oc)(O, 1) +ocp(l, 1),

it follows from Corollary 3.3 that

gF =g~
I"', fJ), q; K 8, q; K'

where

(j = ((l - oc)(l - P), oc( 1 - Pl. P( 1 - oc), rxP)·

Using now [16, Thm. 8.1], we have that

-5 5
X ii,q; K= Lq((L], LcfC' L], L 7C)(j,q; K)

= Lq((L], L",Jq }

=Lq(Lp,q}'
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